
MICROWAVE CHEMISTRY IN THE UNDERGRADUATE LABORATORY: ORGANOMETALLIC CHEMISTRY

Michael Ardon^{a,b}, <u>Graeme Hogarth^b</u>, Philip Hayes^b and Daniel T. Oscroft^b

^aDepartment of Inorganic and Analytical Chemistry, Hebrew University, IL-91904 Jerusalem, Israel ^bChemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.

A simple microwave oven has been modified for use in an undergraduate (UG) laboratory [1]. This cuts reaction times of thermal reactions which would otherwise be precluded from a UG laboratory on the grounds of time and safety and allows the simple preparation of a wide range of otherwise inaccessible compounds. We have focused most of our attention on organometallic complexes. A range of microwave-enhanced reactions of group 6 metal carbonyls is presented that are suitable for use in an undergraduate laboratory [2]. Mo(CO)₆ is particularly well suited to this procedure, with reactions generally proceeding cleanly and without need for an inert atmosphere. Key examples include the high yield syntheses of *cis*-[Mo(CO)₄(pip)₂], *cis*-[Mo(CO)₄(diphosphine)] (diphosphine = dppm, dppe), [(η^5 -RC₅H₄)Mo(CO)₃]₂ (R = H, Me) and [Mo₂(μ -O₂CMe)₄]. Reactions of chromium and tungsten hexacarbonyls are less impressive, nevertheless, [Cr(CO)₅Cl][NEt₄], [(η^6 -C₆H₅OMe)Cr(CO)₃] and *cis*-[W(CO)₄(pip)₂] have all been prepared *via* this method.

References

[1] Microwave-Assisted Reflux in Organometallic Chemistry: Synthesis and Structural Determination of Molybdenum Carbonyl Complexes, G.Hogarth, M.Ardon and P.D.Hayes, *J. Chem. Educ.*, 2002, **79**, 1249 - 1251.

[2] Organometallic chemistry in a conventional microwave oven: The facile synthesis of group 6 carbonyl complexes, M.Ardon, G.Hogarth and D.T.W.Oscroft, *J. Organomet. Chem.*, 2004, **689**, 2429 – 2435.